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ABSTRACT

This paper investigates a class of decomposable codes, their distance and structural

properties. It is shown that this class includes several classes of well known and efficient

codes as subclasses. Several methods for constructing decomposable codes or decomposing

codes are presented. A two-stage soft decision decoding scheme for decomposable codes,

their translates or unions of translates is devised. This two-stage soft-decision decoding is

suboptimum, and provides an excellent trade-off between the error performance and decoding

complexity for codes of moderate and long block length.



1. Introduction

To decode a long block code with maximum likelihood decoding is practically impossible

because the decoder complexity is simply enormous, However, if a code can be decom-

posed into constituent codes with smaller dinaension and simpler structure, it

is possible to devise a practical and yet efficient scheme to decode the code as follows: (1)

The constituent codes are decoded sequentially in multiple stages. The decoded codeword

of one constituent code at one stage is passed to the next stage for decoding the next con-

stituent code; and (2) From the decoded constituent codewords, we form the overall decoded

codeword based on the code structure. This type of decoding is not optimum even if the

decoding of each constituent code is optimum. It is a suboptinmm decoding scheme. How-

ever, this decoding scheme reduces the overall decoding complexity drastically comparing

with the optimum decoding of the overall code. This is because the constituent codes are

smaller in dimension and nmch simpler in decoding complexity. If the constituent codes

have the right structure (such as trellis structure ) and the decoding scheme is devised

properly, an excellent trade-off between the error performance and decoding complexity

can be attained.

In this paper, we first define a class of decomposable codes, and show that several classes

of good known codes are decomposable. Several methods for constructing decomposable or

decomposing codes are presented. Then a two-stage suboptimum decoding scheme is devised

for decomposable codes, their translates and unions of their translates. This suboptimum

decoding scheme reduces the overall decoding complexity drastically comparing with the

single-stage optimum decoding for the same decomposable code while maintains excellent

performance. The error performance of some specific decomposable codes based on the

proposed two-stage suboptimum decoding is evaluated and simulated. It is shown that the

proposed two-stage suboptimum decoding achieves excellent error performance with reduced

decoding complexity.

2. Decomposable Codes

Let L be a finite set of symbols on which an addition "+', a substraction "-",

and a distance measure d(.,-) (Euclidean or Hamming) are defined. Let 0 denote the

zero element of L. The distance measure d(u, v) between two elements, u and v, in L

is assumed to satisfy the following properties: (1) d(u,v) = 0 if and only if u = v, and

(2) d(u, v) = d(v,u). For the binary case,/: is defined as the binary set {0, 1}, the distance

measure d is given by d(0, 1) _ 1, and the "+" on L is defined as the modulo-2 addition. For

a 2t-ary PSK signal set S, L is simply defined as the set of all binary label strings of length

g for the signal points in S. In this case, the addition "+" means the bit-wlse modulo-2

addition.

For twoj-tuples, u = (ul,u2,'",u,) and v = (vl,v2,'-',v,) overL, let u + vand d(u,v)

be defined as,

u + v = (u_ + v_,u_ + v2,...,u_ + vj) (2.1)
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d(fi,v)= _ d(u,,v,) (2.2)
i=I

respectively.For a block code C over L, let d[C] denote the minimum distance of C with

respect to the distance measure d.

For block codes C and C' of the same length over L, letC + C' denote the set {u + v :

u E C and v E C'}. IfC' consistsof a singlecodeword v, then C + {v} iscalleda translate

of C [i].Iffor any two differentcodewords u and u' in C and any two differentcodeword

v and v' E C', u + v _ u' + v',then C and C' axe said to be "independent". If a code

is closed under the component-wise addition "+" and subtraction "-', the code is said to

be additive. For an additive code C and its supercode C' which is a set of cosets of C,

let [CI/C] denote the set of representatives of cosetsof C in C'. For C itself,the all-zero

n-tuple 0 isalways chosen as itsrepresentative.

Let m be a positive integer, and let n be a positive inetger divisible by m. For a code C

of length n over L, C is said to be decomposable with respect to U1 and U, if there exist

independent codes U1 and U2 of length m over L, and codes C1 and C_ of length n over L

such that : (A1) C, C (Ul) "/'" (A2) C2 C_ (U2)"/', and (a3) C = C, + C_ _ {fi + V : fi E

C1 and _¢ E C2}, where A"/" denotes the following Cartesian product of A,

A "Ira = A × A × ... × A.
• J

For u and u' in U1 and v and v' in U2, let a(l) ru u' a(2) rv_'ul,u2t , ) and _'u,,v2 _ , v') be defined as follows:

_ ') V _._0) (u,u') min(d(u+v,u +v :vand inU2}ttU 1 ,U_
(2.3)

d(2) ?vv_,u_ ,v') = min{d(u + v,u + v') : u in Ul) (2.4)

= d°) 'u and d (v,v') =Clearly d(_).v, (u, u) - _'u,n(_).u,t'v, v) 0, u,,u,, , u') = v,.v,

(v',v).

For simpicity, we regard an n-tuple over L as a n/m tuple over L m, the set of all m-tuple

over L, and vice versa. We also consider a code of length n over L as a code of length n/m over

L" and vice versa. For two codewords, x = (x_, x2,"', x,/,,) and y = (y_, Y2,'", Y,/,,) in

Ci with xj and Y1 in U_ for 1 < i < 2 and 1 < j < n/m, define the distance between x and

y based on the distance measure d(0v,.u2(', ") given by (2.3) or (2.4) as follows:

./,,

d (i) ¢x ''_ __,d (i) (x./,y./). (2.5)Ut ,U2 _ , .7 2 = Uz ,U2

j--1

Then the minimum distance of C; based on the distance measure given by (2.3) or (2.4) is

defined as follows:
d(i) rc t z_ Sd(i )t,,.u2t q = t u,,v2(x,Y) :x,y E C,}. (2.6)
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Lemma 1: The minimum distance D[C] of a decomposable code C(= C_ + C_) with respect

to U1 and U_ is lower bounded by :

d[C] _> min{d(_,),v=[C,],d(2)u, ,v2 trC_j1"a (2.7)

If the equality in (2.7) holds, then C is said to be strictly decomposable.

It is clear that given two block codes C1 and C_ over L which satisfy the conditions (A1)

and (A2), we can form a decomposable code C = C1 + C2 over L. In the following, we use

some examples to demonstrate how to construct decomposable codes and to show that some

known codes are decomposable. Hereafter, the following notations are used: (1) 1_ denotes

the set of all binary n-tuples (= {0,1}" ) ; (2) P, denotes the (n,n - 1) linear code which

consists of all the even-weight binary n-tuples; (3) RMi,j denotes the j-th order Reed-Muller

(RM) code of length n = 2_ ; and (4) For a code C, C ± denotes the dual code of C. P_

consists of the all-zero n-tuple 0 and the all-one n-tuple 1.

Example 1 : Consider a binary case where m = 2 , Ul = {(0,0),(0,1)},U2 = P2 =

= du,,u,((O,O),(O,l))= d((O,O),(0,1)) = d(O,1){(0,0),(1,1)} and U_ + U2 {0,1} 2. Then 0)

and (2) 2d(0,1). Let n be an even positive integer.dv,,u2((O,O),(1,1)) = d((0, 0), (1,1)) =
For a binary n/2- tuple, u = (ul,u2, "" u,,12), let ¢1(u) and ¢2(u) denote two n-tuples

obtained from u as follows : (1) ¢1(u) is obtained from u by substituting 00 and 01 for

0 and 1 in u respectively. (2) 6_(u) is obtained from u by substituting 00 and 11 for 0

and 1 in u respectively. Let X and Y be two linear binary block codes of length n/2.

Define the following two linear binary codes of length n : C_ _ ¢_[X] = {¢_(x) : x E X}

and C2 _ ¢2[Y] = {¢2(Y) : Y E Y}. Then C = C_ + C2 is decomposable with respect to

U_ = {(0, 0), (0, 1) } and U2 = { (0, 0), (1, 1) }. The above construction of a decomposable code

with respect to Cr, = {(0,0), (0,1)} and U2 = {(0,0),(1,1)} is simply a permutation of the

lulu + vl-construction of codes. Therefore, codes obtained from the lulu + vl-construction

are decomposable with respect to V_ = {(0,0),(0, 1)} and U2 = {(0,0), (1, 1)} after a certain

permutation.

Now we show that RM codes are decomposable with respect to U_ = {(0,0), (0, 1)} and

U2 = {(0,0),(1, 1)}. Let C1 = ¢1[RM,,-_,,-1] and C2 = ¢2[R_lm-l,,.]. It is known [1] that

RMm,r = + (2.8)

From (2.3) and (2.4), we find that d (_) rC_ = 2 _-_ and uuL,u2t 2j = .ut,tr2t 1j .s(2) rC 1 2 ''-_ Since

d(RM,,,,.) = 2 m-', the equality of (2.7) holds. Therefore Reed-Muller codes are decom-

posable with respect to U_ = { (0, 0), (0, 1) } and U2 = { (0, 0), (1, 1) }.

Example 2 : Consider a binary case where m = 4, UH = {(0, 0), (0,1)}_, U_2 =

{(0,0,0,0),(0,0,1,1)}, (_/1 = U_ + U_2 and U_ = P_. Let C_1 be a block binary code
i

of length n/2 and and minimum Hamming distance 611, C12 be a binary block code of length

n/4 and minimum Hamming distance 6n, and C_ be a binary block code of length n/4

and minimum Hamming distance 4 For a binary j-tuple u, let ¢_¢1(u) ( or ¢2¢_(u) )

denote the 4j-tuple derived from u by substituting (0,0, 0, 0) for each component 0 and

4



(0,O, 1, 1) (or (1, 1, 1, 1)) for each component 1. Let Cll, C_2, C1 and C2 be defined as follows

: (1) Cll A ¢1[C11], (2) C12 /' C' a A ,= ' " = ¢s¢_[ 12]; (3) C1 = C,_ + C_s; and (4) Cs = ¢2¢2[C2]; where

¢1 and ¢2 are defined in Example 1, and for a mapping f and a block code C', f[C'] '_

{f(v) : v 6 C'}. Then C = Cl + C2 is decomposable with respect to U1 and Us. It can be
t I !

shown that d[C] > min{6_a, 261s, 4_52}. If Cn, Cls and C s contain the all-zero n-tuple 0, then

d[C] = min{611,26_2,46s}, and C is strictly decomposable.

As an example, consider RM,,,r with r > 2. From (2.8), we see that RM,,,r is decom-

posable with respect to U1 and Us as follows:

RMm,r = (¢l[RMm-l,r-,] + ¢2¢I[RM,,-2,r-_])

+¢s¢2[RM,,-2,,]. (2.9)

In fact, C1 is decomposable with respect to Ull + U12.

Besides RM codes, multi-level concatenated codes [2] and multilevel modulation codes

[3-5] are also decomposable. Some primitive BCH codes are union of a decomposable code
and its translates.

3. Two-Stage Decoding

In this section, we present a two-stage suboptimum decoding for a decomposable code,

C = C1 + Cs, over L with respect to U1 and Us which achieves the distance min{d_),v2[C_],

d (2) rC 1 t,_,u2t','), andut,v2t 2j}. The first stage is for decoding C1 based on the distance measure d 0) {

d (2) /the second stage decoding is for decoding C2 based on the distance measure u_.v_', ").

Let C = C1 + Cs be a decomposable code of length n over L with respect to U1 and

Us over L r', where n is divisible by m. Suppose C is used for error control over an AWGN

channel. Assume that all the codewords in C are equally likely to be transmitted. For

v E L, let s(v) denote the signal point in R _ represented by v, where R _ denotes the set

of all h-tuples of real numbers, and for a j-tuple v = (v_, v2,..., vj) over L, let s(v) denote

the j-tuple, (s(vl), s(vs),..., s(vj)). For z and z' " hm R , let II z- z II denote the Euclidean

distance between z and z'. For j-tuples z = (z,,z2,...,zj) and z'= (z'l,z'2,...,zj) over R l',

Zl tlet 1[ z- [1 2 be defined as _i_1 II zi- z i I[ 2, the squared Euclidean distance between z

and z'. The distance measure d on L is assumed to satisfy the condition that for u and v

in L, l] s(u) - s(v)II 2 > d(u,v). Suppose that (1) for u E L, a one-to-one mapping T., from

R h to R h which preserves the squared Euclidean distance is defined, and (2) for u and v in

L, s(v - u) = T,(s(v)). Suppose a codeword in C is transmitted. Let z = (zl,z2," ." ,z,) be

the received vector over R h. A two-stage decoding procedure (D) for C can be formulated

as follows:

(D1) Decode z into a codeword in C1. Let u = (ul, us,"., u,) be the decoded codeword

in C1.

(D2) From u, we form the following vector based on the mapping T,(-):

T.(z) =
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Decode Tu(z) into a codeword in C2. Let v = (vl,vs,"" ,v,) be the decoded

codeword .

(D3) The decoded codeword is given by u + v = (ul + vl, us + v2, "", u, + v,).

The decodings of C1 and C2 may be either soR-decision or hard-decision, maximum

likelihood or bounded distance. We may take advantage of the structure of C1, Cs, U1

and Us to simplify the decodings. Since the dimensions of C_ and Cs are smaller than that

of C and UI and Us are much shorter than C, the above two-step decoding may result in a

drastic reduction in decoding complexity.

Suppose both C1 and C2 have n/m-section trellis diagrams, each branch in the trellis

diagram for Ci is a codeword in U1 and each branch in the trellis diagram for Cs is a

codeword in U2. Then a soft-decision (SD) decoding procedure for the above two-stage

decoding can be devised as follows:

(SD1) Divide the received vector z into n/m sections, zi, for 1 < i < n/m, with each

section containing m consecutive components of z. Using the trellis diagram for

C1 and the Viterbi algorithm, decode the n/m-tuple z = (zl, zs,.'., z,/m) into a

codeword u in C1 • The branch metrics in the i-th section of the trellis diagram

are

rain IIz,- s(v)ll (3.1)
ve{r}+V_

for each r E U1. If Us has a trellis diagram, the branch metric of (3.1) can be

computed by using a trellis diagram for {r} + Us.

(SD2) Let u = (ul,u2,'" ,u,) be the decoded codeword in C_ at step SD1 . Form the

vector

Tu(z) = (T,,, ( z_ ), Tu2( zs), . . . , Tu. ( Zn) ),

and decode it into a codeword u in Cs based on the trellis diagram for Cs using

the Viterbi algorithm. To compute the branch metrics at each trellis section, we

divide Tu(z) into n/m sections, Tu(z_) for 1 < i < n/m. The branch metrics in the

i-th section of the trellis diagram for C_ are computed based on IiTu(z,) - s(v)ll

with v E U2.

(SD3) The decoded codeword in C is given by u + v.

It is clear that if Cs is decomposable, Cs can be decoded in two stages. The decoding

procedure (D) can be applied recursively.

Note that the two-stage soft-decision maximum likelihood decoding is a suboptimum de-

coding. In the next section, we will show that this suboptimum decoding achieves excellent

error performance comparing with the single-stage optimum (soft-decision maximum likeli-

hood ) decoding while reduces the overall decoding complexity drastically. It is clear that a

two-stage hard-decision decoding can be devised.



The proposed two-stage decodingis applicable to any code which is a translate of a
decomposablecode. If a codeC is a set of translates of a decomposable code, the decoding

can be carried out as follows: (1) Decode the received vector z into a codeword in each

translate by the above two-stage decoding ; and (2) Choose the most probable one among

all the decoded words as the final decoded codeword.

Sufficient conditions under which the proposed two-stage decoding procedure result in a

correct decoding for an AWGN channel, are given in Lemma 2.

Lemma 2 : Using the two-stage soft decision maximum likelihood decoding, if a codeword

w E C is transmitted and z is received such that

IIz-  (w)II 2 < min{d(t_?,u2[C1],d_?,u2[C2]}/4

then z is correctly decoded into w.

4. Performance

In the following, we use three examples to demonstrate that the proposed decoding of

decomposable codes indeed reduces the decoding complexity drastically while maintains

excellent error performance. A decomposable code may be decomposed in different ways.

Different decompositions result in different error performance and decoding complexities. In

general, the error performance of the first stage decoding has dominant effect on the overall

error performance and the first constituent code should be chosen as large as possible within

allowable decoding complexity.

Example 3. : In Example 1, we showed that the r-th order RM code C = RMm,r

of length 2"i and minimum distance 2m-r is strictly decomposable with respect to U1 =

{(0,0),(0,1)} and U2 = {(0,0),(1,1)}. The constituent codes of C = R_fm,r are: C1 =

¢I[RMr,-1,_-1] and C2 = ¢2[RMm-l,r]. R3I,,,_I,,.__ and RM,,,_L_ have 4-section trellis

diagrams with 2(,_--_) states and 2("_;-2) states respectively[6]. It is easy to see that C_ and

C_ also have 4-section trellis diagrams with 2(-_--_) states and 2('_'2) states respectively. The
I1_--1

RM code C = RM,,,,r has a 4-section trellis with 2( r ) states. If we decode C = RM,,,,, with

the optimum decoding using Viterbi algorithm, the state complexity of the Viterbi decoder

is 2(m;-'). However, if we decode C = RM,,,r with the proposed two-stage suboptimum

decoding algorithm, the overall state complexity of the Viterbi decoder is 2(';'2) + 2('-2)

which is much smaller than 2(";-x), the state complexity of the 4-section trellis diagram for

the overall code C = RM_., for m > 5. For example, let m = 6 and r = 2. Then C = R._I_,2

is a (64,22) code which has a 4-section trellis diagram with 2(]) = 1024 states. However, its

constituent codes, C1 = ¢1[RM5,_] and C2 = ¢2[RM5,2], have 4-section trellis diagrams with

2(_) = 16 states and 2(_) = 64 states respectively. Using the two-stage suboptimum decoding,

the total state complexity of a Viterbi decoder is 80 which is much smaller than the state

complexity 1024 for the single-stage optimum decoding for C = RM6,2. The code C = RM6,2

has minimum distance 16, which is comparable to a rate - 1/3 optimum convolutional code

of constraint length 8 and free distance 16 [7]. To decode this convolutional code with the

Viterbi algorithm, a Viterbi decoder of 128 states is needed.
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The error performanceof the RM code C = RM'6j with the proposed two-stage sub-

optimum soft-decision decoding based on the above decomposition,denoted 2sl, is shown

in Figure 1. We see that it achieves 5.1db coding gain over the uncoded BPSK at block

error rate 10 -5. Figure 1 also shows simulation results p}_),[2sl] on the probability that the

first stage decoding is correct but the second stage decoding is incorrect. Compared with

the simulation results p;c,,[2s,] on the overall error probability, p}_)0[2sl] is very small. This

fact suggests to choose a supercode of ¢1[ RMsa] as the first constituent if the decoding

complexity is allowable. By applying the decomposition shown in Example 2 to RM6,2, we

have C1 _- ¢_[RMs,,]+¢,¢2[RM4,x] and C2 _ ¢2¢_[RM4,2] as the first and second constituent

codes, respectively. Cl and C2 have 4-section trellis diagrams with 128 states and 8 states,

respectively. Note that the first consituent code in the decomposition contains the first con-

stituent code of the former decomposition as a small subcode. The error performance of

RM6,2 with this decomposition, denoted 2s2, is shown in Figure 1. It achieves 5.6dB coding

gain over the uncoded BPSK at block error rate 10 -s. Figure 1 also shows simulation results

, denoted p_c,°[ls] , and union upper bounds, denoted _ [ls], on the probability of incor-

rect decoding for the single stage optimum decoding. We see that the coding losses of the

two-stage suboptimum decodings based on decompositions 2sl and 2s2 from the single-stage

optimum decoding are about 1.0dB and 0.5dB, respectively, at the block error rate 10 -5.

However there is a big reduction in decoding complexity.

It is known that an extended and permuted BCH code of length 2" and minimum distance

2 m-r contains the r-th order Reed-Muller code RM,,,r as a proper subcode[1,7]. As a result,

this extended and permuted BCH code is a union of cosets (or translates) of the Reed-Muller

code RM,,,r. Since RMm,, is decomposable and has relatively simple trellis structure, this

extended and permuted BCH code can be decoded with the proposed suboptimum soft-

decision two-stage decoding. First we decode the received n-tuple z into a codeword in each

translate of the RMm,, code by the proposed two-stage decoding. Then we choose the most

probable one among all the decoded words as the final decoded codeword. All the translates

of the RM,,,,. code have trellis diagrams isomorphic to that of the RMr,,,, code. Let K be

the total number of translates of RM,,,_ ( including RMm,,. itself). If K is not too big, it is

possible to implement K separate but identical Viterbi decoders to decode the K translates

of RM,,,_ in parallel. This definitely speeds up the decoding process.

Example 4: Let C be the extended and permuted (64, 24) BCH code whose complexity

of trellis structure has been analysed in [8]. C contains the (64, 22) second order Reed-Muller

code as a proper subcode. There are 4 cosets in C modulo RM_ a. The coset code [C/RM6a]

is generated by the two codewords gl and g2 which can be determined [8]. Each coset of

C modulo RM6,_ can be decomposed into two constituent codes, C1 and C2, either in the

form given in Example 1 ( denoted 2sl ) or in the form given in Example 2 ( denoted 2s_ ).

The two constituent codes, C1 and C_, have a 4-section trellis diagrams with 16 states and

64 states or 128 states and 8 states, respectively. Hence each coset can be decoded with the

suboptimum soft-decision two-stage decoding with two Viterbi decoders, one with 16 states

(or 128 states ) and the other with 64 states ( or 8 states ). The overall decoder for the

(64, 24) extended and permuted BCH code consists of 4 separate two-stage decoders. These

four decoders process the received 64-tuple in parallel. The total number of states for the



overall decoderis 320 (or 544). The error performanceof this BCH codewith suboptimum
soft-decision two-stagedecodingbasedon the decomposition2sl is simulated and shownin
Figure 2. We see that it achieves5.4 dB codinggain over the uncoded BPSK at block
error rate 10-5, which comparesfavorably with the rate-l/30denwalter convolutional code
of constraint length 8 and fi'eedistance 16. If eachcosetof the (64,24) extendedBCH code
modulo R.,lle,2 is decoded with one-stage optimum decoding, four 1024-state Viterbi decoders

are needed, one for each coset. This amounts to a total of 4096 states which is much greater

than the number of states ( 320 or 544 ) in a two stage decoding as described above.

Example 5 : Let C be the extended and pernmted (64, 45) BCH code whose complexity

of trellis structure has been analyzed in [8]. C includes RM6,3, a (64, 42) code, as a subcode.

[C/RM6,3] consists of eight cosets. Each coset can be decomposed into two constituent codes,

C1 and C2 have 4-section trellis diagrams with 64 states and 16 states, respectively. Hence

each coset can be decoded with the suboptimum soft-decision two-stage decoding with two

Viterbi decoders, one with 16 states and the other with 64 states. The overall decoder for

the (64,45) extended and permuted BCH code consists of 8 separate two-stage decoders.

These 8 decoders process the received 64-tuple in parallel. The total number of states for

the overall decoder is 640. The error performance of the BCH code with suboptimum soft-

decision two-stage decoding based on the above decomposition, denoted 2sa, is simulated

and shown in Figure 3. We see that it achieves 5.4dB coding gain over the uncoded BPSK

at block error rate 10 -5. If each coset of the (64, 45) extended BCH code modulo RM6,3

is decoded with one-stage optimum decoding, eight 1024-state Viterbi decoders are needed,

one for each coset. In this case, the total number of states is 8192 which is much greater

than that of the two-stage decoding described above ( 640 states ).

From the above three examples, we see that the proposed code decomposition and two-

stage suboptimum decoding achieves excellent reduction in decoding complexity.

5. Conclusion

In this paper, we have shown that code decomposition with multi-stage suboptimum de-

coding achieves excellent error performance with a drastic reduction in decoding complexity.

This finding may have an impact on the future designs of error control systems for reliable

data communications. For future work, we should focus in searching efficient decomposable

codes with simple trellis structure so that soft-decision Viterbi decoding can be applied.
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